

Journal of Alloys and Compounds 262-263 (1997) 191-193

High oxygen pressures and the stabilization of the highest oxidation states of transition elements

G. Demazeau^{a,b,*}, D.Y. Jung^c, A. Largeteau^{a,b}, C. Cros^{a,b}, J.H. Choy^d

"Institut de Chimie de la Matière Condensée de Bordeaux (I.C.M.C.B.-C.N.R.S.-UPR 9048), Avenue du Dr. Schweitzer, 33608 Pessac Cedex, France

^bInterface Hautes Pressions, E.N.S.C.P.B., Avenue Pey Berland, 33402 Talence Cedex, France

^cUniversity of Illinois at Urbana Champaign, Beckman Institute, 405 North Mathews Avenue, Urbana, IL61801, USA

^dDepartment of Chemistry, Seoul National University, Seoul 151-742, South Korea

Abstract

The stabilization of the highest oxidation states n + of transition elements M^{n+1} is an important way of evaluating the role of the covalency of the $(M^{n+}-O)$ bond in the physico-chemical properties of corresponding oxygen lattices. Recently, using high oxygen pressures, Ir(VI) has been stabilized in A₂BIr(VI)O₆ oxides with the perovskite-type structure (A = La,Ba,Sr; B = Ca.Sr,Mg,Zn,Li). Through XRD and XANES analyses, the M^{n+} -O distance and the splitting energy between t_{2g} and e_g levels at the Ir(VI) site have been evaluated. The magnetic properties of such ordered A₂ $3Ir^{n+}O_6$ perovskites (n = IV, V, VI) have been discussed as a function of the covalency of the \ln^{n+} -O bond and the \ln^{n+} -O distance. © 1997 Elsevier Science S.A.

Keywords: High oxygen pressures; High oxidation states; Ir(VI) oxides

1. Introduction

When the formal oxidation state n + of a transition element M increases, its ionic radius is consequently decreased, the local crystal field energy is enhanced and the covalency of the $M^{n+}-O$ bond is significantly increased. These different local phenomena drastically modify the physico-chemical properties of the host lattice and result in effects comparable to the influence of very high pressures on an oxygen lattice containing M^{n+} cations with a constant n + value.

2. High oxygen pressures

Three main routes can be used to generate oxygen pressures [1]:

- compressed gas ($P_{\text{max}} \approx 500$ MPa, $T_{\text{max}} \approx 850^{\circ}$ C); oxidizing solutions ($P_{\text{max}} \approx 500$ MPa, $T_{\text{max}} \approx$ 850°C):
- in situ thermal decomposition of KClO₃ or unstable oxides in the reaction cell of a belt-type apparatus ($P_{\text{max}} \approx 7$ GPa, $T_{\text{max}} \approx 2000^{\circ}$ C).

During the last 25 years, the development of high oxygen pressures in Bordeaux has led to a great improvement in the preparation methods of new oxides with unusual oxidation states of transition metals (Table 1).

In addition, different electronic phenomena can be associated with the stabilization of high oxidation states of d elements. For example, the transition from one electronic configuration to another (for example low-spin \rightarrow high spin) as a function of temperature has been studied, particularly in the case of Co(III) in

^{*} Corresponding author.

^{0925-8388/97/\$17.00 © 1997} Elsevier Science S.A. All rights reserved PH \$0925-8388(97)00378-2

Table 1 Some unusual oxidation states of 3d elements stabilized under oxygen pressures

Element	Oxidation state	Host lattice	Reference
Fe	Fe(IV)	$A_{0.50} La_{1.50} Li_{0.50} Fe_{0.50} O_4$ (A = Ca,Sr,Ba)	[4]
	Fe(V)	La ₂ LiFeO ₆	[5]
Со	Co(III)	LnCoO ₃ SrLnCoO ₄ (A _{0.50} La _{1.50})M _{0.50} Co _{0.50} O ₄ (A = Ca,Sr,Ba; M = Mg,Zn)	[6] [7] [8]
	Co(IV)	$(Sr_{0.50}La_{1.50})Li_{0.50}Co_{0.50}O_4$	[9]
Ni	NKIID	LnNiO3 SrLnNiO4 (A0 50 La1 50)M0 50 Ni0 50 O4	[10] [11] [12]
Cu	Cu(III)	LaCuO ₃ La ₂ Li _{0 50} Cu _{0 50} O ₄ SrLaCuO2	[13,14] [15]

Table 2

Evolution of the average Ir oxidation state as a function of the experimental conditions for the Λ_2 MIrO₆ (A = Sr.Ba; M = Ca,Sr.Zn.Mg) perovskites

Theoretical	Oxygen pressure	Average Ir
composition	treatment	oxidation state
Ba3CalrO6	880°C, 60 MPa, 48 h	5,99
Ba ₂ CatrO ₆	900°C, 6 GPa, 10 min	6,00
Ba ₂ SrIrO ₆	880°C, 60 MPa, 48 h	5.88
Ba ₂ ZnirO ₆	880°C, 60 MPa, 48 h	5.75
Bay ZnfrOn	1000°C, 7 GPa, 15 min	5.96
Sr ₂ CalrO ₆	880°C, 60 MPa, 48 h	é yn
Sr ₂ CalrO ₆	900°C, 6 GPa, 5 min	\$,99
Sr ₃ MgtrO _n	880°C, 60 MPa, 48 h	5.75
Sr ₂ MgIrO ₆	900°C, 6 GPa, 5 min	5.81
Sr ₂ ZnIrO _b	880°C, 60 MPa, 48 h	5.54
Sr ₂ ZnIrO ₆	1000°C. 7 GPa, 15 min	5.72

Table 3

Evolution of the $lr^{n+1}=0$ bond distance vs. the oxidation state n

Oxide	n +	d(1r" ' ~O)	
		(±0.005 Å)	
SrIrO ₃	IV	2.005	
La: MgIrO ₆	IV	2,004	
La ₂ ZnIrO ₆	IV	1.998	
La ₂ LifrO ₆	V	1.959	
Ba ₂ YlrO ₆	v	1.962	
Ba ₂ CalrO ₆	VI	1.926	
Ba ₂ SrfrO ₆	VI	1.928	
Sr ₂ CalrO ₆	VI	1.922	

Table 4

Variation of the energy splitting ΔE (eV) between t_{2g} and e_g states for different \ln^{n+1} oxides

Oxide	<i>n</i> +	ک <i>E</i> (±0.01 eV)
La, MgIrO.	IV	3.18
La ₂ ZnlrO ₆	IV	3.05
La, LilrO	v	3.67
Ba2SIrO6	V	3.26
Ba ₃ CaIrO ₆	VI	3.89
Ba-SrIrO ₆	VI	3.88
Sr ₂ CalrO ₀	VI	3.90

oxygen lattices derived from the perovskite structure [2]. Another example is the disproportionation $2M^{n+1} \rightarrow M^{(n+1)+} + M^{(n+1)+}$ which has been investigated for Fe(IV) in the AFeO₃ oxides as a function of the steric effect of the cation A (Ca,Sr) using ¹¹⁹Sn Mössbauer spectroscopy [3].

Due to the large increase in the local crystal field energy on going from the 3d to the 5d series, the highest oxidation states can be obtained for the third row of transition elements. Recently, Ir(VI) has been stabilized in different oxides with the perovskite structure.

3. Preparation and characterization of the $A2MIr(VI)O_6$ perovskites (A = Sr, Ba; M = Ca, Sr, Zn, Mg)

These materials were prepared through solid state reactions in three or four steps.

A stoichiometric mixture of the reactants was calcinated at approximately 850° C for 24 h, and then heated at approximately 950° C in an oxygen atmosphere for two days. The third step consisted of treatment under oxygen pressure (compressed gas) at 880° C and 60 MPa for 2 days. The last one was treatment under very high oxygen pressures (5-7 GPa) at 900° C using the in situ decomposition of KClO₁ [16].

The experimental conditions and the resulting value of the oxidation state of iridium are reported in Table 2 for the various A_2 MIrO₆ compounds.

In order to study the evolution of the $Ir^{n+}-O$ distance and of the local crystal field energy vs. the oxidation state n +, several iridium perovskites have been investigated using XANES (X-ray absorption near edge structure) and Ir-L_{III}-edge EXAFS (Extended X-ray absorption fine structure) [17].

Table 3 gives the variation of the Ir^{n+} -O distance vs. the n value in different perovskite-type lattices [17].

The values of the energy splitting between the t_{2g} and e_g states is reported in Table 4 for different Ir^{n+2} oxides [17].

The ΔE value increases with increasing n + value but the influence of the competing M—O bond to the Ir^{*n*+}-O ones also plays an important role. A weak competing bond, such as Li-O in La₂LiIr(V)O₆ leads to a strong splitting.

4. Conclusion

The use of oxygen pressure appears to be an important tool for the stabilition of unusual oxidation states of transition elements. The selection of the competing bond and the local symmetry is of great help in optimizing the local crystal field energy and consequently improving the stabilization of unknown or uncommon valencies leading to a highly covalent M—O bond.

References

- [1] G. Demazeau, Thesis, University Bordeaux I, 1973.
- [2] G. Demazeau, S.H. Byeon, J.M. Dance, J.H. Choy, M. Pouchard, P. Hagenmuller, Eur. J. Solid State Inorg. Chem. 29 (1992) 283-300.
- [3] G. Demazeau, P. Fabritchnyi, L. Fournes, S. Darracq, I.A.

Presniakov, K.V. Pokholok, V.P. Gorkov, J. Etourneau, J. Mater, Chem. 5 (1995) 553-556.

- [4] G. Demazeau, M. Pouchard, N. Chevreau, J.F. Colombet, M. Thomas, F. Menil, P. Hagenmuller, J. Less Common Met. 76 (1980) 279.
- [5] G. Demazeau, B. Buffat, F. Menil, L. Fournes, M. Pouchard, J.M. Dance, P. Fabritchnyi, P. Hagenmulier, Mat. Res. Bull. 16 (1981) 1465.
- [6] G. Demazeau, M. Pouchard, P. Hagenmuller, J. Sol. State Chem. 9 (1974) 202.
- [7] G. Demazeau, Ph. Courbin, I.G. Main, G. Le Flem, C.R. Acad. Sc. 283 (1976) 61.
- [8] G. Demazeau, M. Pouchard, L.M. Zhu, P. Hagenmuller, Z. Anorg. Allg. Chem. 555 (1987) 64.
- [9] B. Buffat, G. Demazeau, R. Black, Y. Takeda, M. Pouchard, P. Hagenmuller, C. R. Acad. Sc. 295 (1982) 557.
- [10] G. Demazeau, A. Marbeuf, M. Pouchard, P. Hagenmuller, J. Sol. State Chem. 3 (1971) 582.
- [11] G. Demazeau, M. Pouchard, P. Hagenmuller, J. Sol. State Chem. 18 (1976) 159.
- [12] L.M. Zhu, G. Demazeau, M. Pouchard, J.M. Dance, P. Hagenmuller, J. Sol. State Chem. 78 (1989) 46.
- [13] G. Demazeau, C. Parent, M. Pouchard, P. Hagenmuller, Mat. Res. Bull. 7 (1972) 913.
- [14] J.B. Goodenough, N.F. Mott, M. Pouchard, G. Demazeau, P. Hagenmuller, Mat. Res. Bull. 8 (1973) 647.
- [15] J.B. Goodenough, G. Demazeau, M. Pouchard, P. Hagenmuller, J. Sol. State Chem. 8 (1973) 325.
- [16] D.Y. Jung, Thesis, University Bordeaux I, 1313, 1995
- [17] J. H. Choy, D.K. Kim, S.H. Hwang, G. Demazeau, D.Y. Jung. J. Am. Chem. Soc. 117 (1995) 8557.